A new maximum power point method based on a sliding mode approach for solar energy harvesting

نویسندگان

  • Maissa Farhat
  • Oscar Barambones
  • Lassaad Sbita
چکیده

This paper presents a photovoltaic (PV) system with a maximum power point tracking (MPPT) facility. The goal of this work is to maximize power extraction from the photovoltaic generator (PVG). This goal is achieved using a sliding mode controller (SMC) that drives a boost converter connected between the PVG and the load. The system is modeled and tested under MATLAB/SIMULINK environment. In simulation, the sliding mode controller offers fast and accurate convergence to the maximum power operating point that outperforms the well-known perturbation and observation method (P&O). The sliding mode controller performance is evaluated during steady-state, against load varying and panel partial shadow (PS) disturbances. To confirm the above conclusion, a practical implementation of the maximum power point tracker based sliding mode controller on a hardware setup is performed on a dSPACE real time digital control platform. The data acquisition and the control system are conducted all around dSPACE 1104 controller board and its RTI environment. The experimental results demonstrate the validity of the proposed control scheme over a stand-alone real photovoltaic system. 2016 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional order Adaptive Terminal Sliding Mode Controller Design for MPPT in a Solar Cell under Normal and Partial Shading Condition

In this paper, by combining fractional calculus and sliding mode control theory, a new fractional order adaptive terminal sliding mode controller is proposed for the maximum power point tracking in a solar cell. To find the maximum power point, the incremental conductance method has been used. First, a fractional order terminal sliding mode controller is designed in which the control law depend...

متن کامل

Maximum Power Point Tracking Using Sliding Mode Control for Photovoltaic Array

In this paper, a robust Maximum Power Point Tracking (MPPT) for PV array has been proposed using sliding mode control by defining a new formulation for sliding surface which is based on increment conductance (INC) method. The stability and robustness of the proposed controller are investigated to load variations and environment changes. Three different types of DC-DC converter are used in Maxim...

متن کامل

A Novel Algorithm to Find Maximum Power Point for Solar Systems under Partial Shading

In this paper, a new two-stage control algorithm to reach the maximum power point in photovoltaic (PV) systems under partially shaded conditions is presented. This algorithm tracks the maximum power point without any need to measure the open circuit voltage, short circuit current and making use of any extra switches. To achieve maximum power performance, the method firstly selects the relevant ...

متن کامل

Sliding-Mode-based Improved Direct Active and Reactive Power Control of Doubly Fed Induction Generator under Unbalanced Grid Voltage Condition

This paper proposes an improved direct active and reactive power control (DPC) strategy for a grid-connected doubly fed induction generator (DFIG) based wind-turbine system under unbalanced grid voltage condition. The method produces required rotor voltage references based on the sliding mode control (SMC) approach in stationary reference frame, without the requirement of synchronous coordinate...

متن کامل

New Maximum Power Point Tracking Technique Based on P&O Method

In the most described maximum power point tracking (MPPT) methods in the literatures, the optimal operation point of the photovoltaic (PV) systems is estimated by linear approximations. However, these approximations can lead to less optimal operating conditions and significantly reduce the performances of the PV systems. This paper proposes a new approach to determine the maximum power point (M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016